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1. (a) Solve the game below by iterated elimination of strictly dominated
strategies. Describe briefly each step.

X Y Z
A 2, 2 1, 4 3, 1
B 9, 3 2, 4 0, 3
C 3, 0 0, 1 0, 5
D 1, 7 0, 1 2, 2

SOLUTION: First, D is dominated by A. Then X is dominated
by Y . Then C is dominated by A. Then Z is domnated by Y .
Finally A is dominated by B. Thus the surviving strategies are B
for player 1 and Y for player 2.

(b) Find all pure and mixed Nash equilibria in the following game:

t1 t2
s1 2, 1 3, 0
s2 1, 2 4, 3
s3 0, 1 0, 3

SOLUTION: There are two pure NE:

(s1, t1) and (s2, t2).

To find the mixed NE, first note that player 1 will never put
any probability mass on s3 since it is strictly dominated by each
of his two other strategies. Let p denote the probability that
player 1 plays s1 (then he plays s2 with probability 1 − p) and
let q denote the probability that player 2 plays t1 (then he plays

1



t2 with probability 1 − q). In a mixed NE each player must be
indifferent between all pure strategies that are played with positive
probability:

2q + 3(1− q) = q + 4(1− q)
2p+ (1− p) = 3(1− p)

From these two equations we get p = q = 1
2
. Thus there is precisely

one (non-pure) mixed NE: Player 1 plays each of the strategies
s1 and s2 with probability 1

2
(and strategy s3 with probability 0).

Player 2 plays each of his two strategies (t1 and t2) with probability
1
2
.

(c) Consider the game given by the following game tree:
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i. Is it a game of perfect or imperfect information? How many
subgames are there in the game (excluding the game itself)?
What are the possible strategies for the three players?

SOLUTION: There are no information sets with more than
one decision node, so it is a game of complete information.
There are three subgames in the game: One starting at each
of player 2’s decision nodes and one starting at player 3’s
decision node. The strategy sets for the players are:

Player 1 : {L,R}
Player 2 : {L′L′, L′R′, R′L′, R′R′}
Player 3 : {L′′, R′′}
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ii. Find all (pure strategy) subgame perfect Nash equilibria.

SOLUTION: Since player 2 is indifferent between L′ and R′

at his right decision node, there are two pure strategy SPNE:

(L,L′L′, L′′) and (R,L′R′, L′′).

iii. Is the strategy profile (R,L′R′, R′′) a Nash equilibrium?

SOLUTION: Yes, none of the players can achieve a higher
payoff by unilaterally deviating to a different strategy. If
player 1 devaties to L, then his payoff will be 2 instead of
4. If player 2 devaties to any of his alternative strategies
then his payoff will still be 2. If player 3 deviates to L′′ then
his payoff will still be 2 (because his decision node is never
reached given the strategies of player 1 and 2).

2. Three students (i = 1, 2, 3) are working on a joint project. The amount
of time student i spends on the project is denoted xi ≥ 0. The final
quality q of the project depends on x1, x2, and x3 in the following way:

q(x1, x2, x3) = 2x1 + 2x2 + x3 − x1x2 − x1x3.

Spending time on the project is costly for the students. The cost func-
tion for each student is:

ci(xi) = (xi)
2.

The utility for each student is equal to the final quality of the project
minus his cost:

ui(x1, x2, x3) = q(x1, x2, x3)− ci(xi).

(a) Find the best response functions for the three students. I.e., for
each student i, find the optimal amount of time to spend on the
project given the time spent by the other two students.

SOLUTION: The maximization problem for student i is:

max
xi≥0

2x1 + 2x2 + x3 − x1x2 − x1x3 − x2i .

The FOCs for the three students are:

Student 1 : 2− x2 − x3 − 2x1 = 0
Student 2 : 2− x1 − 2x2 = 0
Student 3 : 1− x1 − 2x3 = 0
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From these we get the following best response functions:

x1 =
2− x2 − x3

2

x2 =
2− x1
2

x3 =
1− x1
2

(b) Suppose the students simultaneously and independently decide
howmuch time to spend on the project. Find the Nash equilibrium
of this game.

SOLUTION: In a NE each student best responds to the time spent
by the other two students. Thus, using the results from (a), a NE
(x∗1, x

∗
2, x
∗
3) must satisfy the following conditions:

x∗1 =
2− x∗2 − x∗3

2

x∗2 =
2− x∗1
2

x∗3 =
1− x∗1
2

Solving this system of equations we get:

x∗1 =
1

2
, x∗2 =

3

4
, and x∗3 =

1

4
.

(c) Now consider the following two stage game: First, student 1 de-
cides howmuch time to spend on the project. Finally, after observ-
ing the choice of student 1, the students 2 and 3 simultaneously
and independently decide how much time to spend. Set up the
maximization problem facing student 1 in stage one.

SOLUTION: In stage one, student 1 has to take into account how
the other two students will respond in the second stage. Since the
best response functions of student 2 and 3 depend only on x1, it
immediately follows that they will choose the following amounts
of time in stage two:

x2 =
2− x1
2

x3 =
1− x1
2
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Thus the maximization problem facing student 1 in stage one is:

max
x1≥0

2x1 + 2(
2− x1
2

) +
1− x1
2
− x1(

2− x1
2

)− x1(
1− x1
2

)− x21.

By a bit of algebra this problem can be simplified to:

max
xi≥0
−x1 +

5

2

(d) Find the subgame perfect Nash equilibrium of the two stage game
from (c). Who works more and who works less than in the Nash
equilibrium from (b)? Give an intuitive explanantion.

SOLUTION: By the maximization problem above we immediately
get x1 = 0. And then it follows that student 2 and 3 will respond
with:

x2 =
2− 0
2

= 1

x3 =
1− 0
2

=
1

2

Thus the outcome of the SPNE is

x1 = 0, x2 = 1, and x3 =
1

2
.

Thus student 1 works less than in the simultaneous game, student
2 and 3 both work more. In the dynamic game student 1 can
commit to spending no time at all on the project, which makes
the other two students work more. In the simultaneous game such
a commitment is not possible.
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3. Consider the following signalling game:
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(a) Find a separating perfect Bayesian equilibrium.

SOLUTION: Consider first the sender strategy (L,R), i.e., type
t1 plays L and type t2 plays R. Then the beliefs of the receiver
must be p = 1 and q = 0. And then it follows that the optimal
strategy of the receiver is (u, d), i.e., he plays u after observing
the message L and d after observing R. It is then easy to check
that the original strategy of the sender is indeed optimal. Thus
we have the following separating PBE:

[(L,R), (u, d), p = 1, q = 0].

Consider then the sender strategy (R,L). Then we must have
p = 0 and q = 1. And then the optimal strategy of the receiver is
(d, u). But given this strategy for the receiver, t2 can profitably
deviate from L to R (gives him payoff 2 instead of 1). Thus there
does not exist a PBE where the sender’s strategy is (R,L).

(b) Find a pooling perfect Bayesian equilibrium. Does it satisfy Sig-
nalling Requirement 5 from Gibbons? Does it satisfy Signalling
Requirement 6?

SOLUTION: Consider first the sender strategy (L,L). Then we
must have p = 1

2
and then it is optimal for the receiver to play

d after observing L. But this means that it is not optimal for t2
to play L (giving him a payoff of 1) because he can get at least
2 by deviating to R. Thus there does not exist a PBE where the
sender strategy is (L,L).
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Consider then the sender strategy (R,R). Then we must have q =
1
2
and then it is optimal for the receiver to play d after observing

R. After observing L it is optimal to play d if

p ≤ 2(1− p) ⇐⇒ p ≤ 2
3
.

It is only optimal for t1 to play R if the receiver plays d after
observing L (it is always optimal for t2 to play R when the receiver
plays d after observing R). Thus we must have p ≤ 2

3
. Putting

everything together we have that

[(R,R), (d, d), p, q =
1

2
]

is a PBE for all p ≤ 2
3
and that there does not exist other PBE

where the sender’s strategy is (R,R).
There is no dominated message for either type. Thus all of the
pooling PBE from (b) satisfies SR5 (see Gibbons p. 236-7). Then
consider SR 6 (see Gibbons p. 239). For any of the pooling PBE,
L is equilibrium dominated for t2 (but not for t1). Thus SR6 is
only satisfied if 1− p = 0, which is not true in any of the pooling
PBE. Thus none of the pooling PBE satisfies SR6.

4. Consider the bargaining problem (U, d) given by:

U = {(v1, v2)|v1, v2 ≥ 0 and v2 ≤ −2v1 + 4}
d = (0, 0)

(a) Draw a sketch of U . Can the symmetry axiom (SYM) be used to
conclude that the Nash bargaining solution of (U, d) must satisfy
v1 = v2?

SOLUTION: Sketch:
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To use the symmetry axiom we must have that U is symmetric:

(v1, v2) ∈ U ⇒ (v2, v1) ∈ U.

This is not the case here (for example (1, 2) ∈ U , but (2, 1) /∈ U).
Thus we cannot use the symmetry axiom here.

(b) Find the Nash bargaining solution of (U, d).

SOLUTION: The Nash bargaining solution is (v1, v2) = (1, 2).
This can be shown in several ways, for example the two below:

i. Let

U ′ = {(2v1, v2)|(v1, v2) ∈ U}
d′ = (2d1, d2) = (0, 0)

We can use the symmetry axiom on the bargaing problem
(U ′, d′) (U ′ is the triangle with corners at (0, 0), (4, 0), and
(0, 4)). Thus the Nash bargaining solution of this bargaining
problem is (2, 2) (follows from symmetry and Pareto effi ciency
(PAR)). And then we can use the fact that

U = {(1
2
v1, v2)|(v1, v2) ∈ U ′}

d = (
1

2
d′1, d2) = (0, 0)

and the axiom about invariance of equivalent utility represen-
tations (INV) to conclude that the Nash bargaining solution
of (U, d) is (1

2
2, 2) = (1, 2).
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ii. We know that the Nash bargainig solution is given as the
solution to

max
(v1,v2)∈U

(v1 − d1)(v2 − d2).

Since d = (0, 0) and the solution to this problem obviously
must be on the Pareto effi cient frontier of U , the maximization
problem above can in this case be written

max
0≤v1≤2

v1(−2v1 + 4).

By the FOC we get v1 = 1 and then we get v2 = −2(1)+4 = 2.
Thus the Nash bargaining solution is (1, 2).

9


